Forgive me for pointing this out, but to me the asymmetry is visible if you compare the top and bottom half of the output sine wave. I am referring to the shape, not the magnitude.
That's fair. There may be some asymmetry resulting in some even-order harmonics, but the same could be said about almost every "classic" microphone. As long as it's subtle and no hard-clipping, I'm fine with it - especially since this is with a 500mV input, which is much higher than the circuit would normally see.Forgive me for pointing this out, but to me the asymmetry is visible if you compare the top and bottom half of the output sine wave. I am referring to the shape, not the magnitude.
Did you make an FFT of this waveform already? For most professional condenser mics, max input and output levels are specified at 0.5 % THD. On an oscillogram, THD often becomes visible only at levels above 1-2%. As the distortion is very obvious, I'd expect way higher THD. Could be exactly what you want if you'd like to add some "color", but if you want to compare apples to apples, you should specify the input and output levels at 0.5% THD.That's fair. There may be some asymmetry resulting in some even-order harmonics,
Sure, any circuit will generate lots of distortion if you drive it hard enough. But to say that every classic microphone generates the same amount of distortion at the same input level is just not true. There are many clasdic designs, from properly designed and biased Schoeps circuits to OPA Alice or Rode NT5 that generate less than 0.5% THD at 500mV input. Some can handle several Volts at their input. If you add a feedback capacitor as I mentioned in one of previous posts, I'm sure you'll improve the performance considerably!resulting in some even-order harmonics, but the same could be said about almost every "classic" microphone.
Yes, without any feedback applied, it's just an open-loop CS amplifier with Gain governed by gm and load impedance only. With gm all over the place ( device-to-device variations and as function of bias current) and a frequency dependant load, gain will be ill-defined.For some reason, I get different results.
Here I compare the outputs with 0.5V and 1V at the input?
With 0.5V distortion is visible, and with 1V clipping is evident.
Too much uncontrolled gain.
View attachment 140871
Enter your email address to join: