here is a Dept of Defense file>
http://everyspec.com/MIL-HDBK/MIL-HDBK-1000-1299/MIL_HDBK_1131_1788/
looks like e-caps are shrinking in size because they rough up the foil>
"Dry" aluminum capacitor
A "dry" electrolytic capacitor with 100 µF and 150 V
The ancestor of the modern electrolytic capacitor was patented by Samuel Ruben in 1925, who teamed with Philip Mallory, the founder of the battery company that is now known as Duracell International. Rubens idea adopted the stacked construction of a silver mica capacitor. He introduced a separated second foil to contact the electrolyte adjacent to the anode foil instead of using the electrolyte-filled container as the capacitor's cathode. The stacked second foil got its own terminal additional to the anode terminal and the container no longer had an electrical function. This type of electrolytic capacitor combined with an liquid or gel-like electrolyte of a non-aqueous nature, which is therefore dry in the sense of having a very low water content, became known as the "dry" type of electrolytic capacitor.[
With Ruben's invention, together with the invention of wound foils separated with a paper spacer 1927 by A. Eckel of Hydra-Werke (Germany) the actual development of e-caps began.
William Dubilier, whose first patent for electrolytic capacitors was filed in 1928, industrialized the new ideas for electrolytic capacitors and started the first large commercial production in 1931 in the Cornell-Dubilier (CD) factory in Plainfield, New Jersey. At the same time in Berlin, Germany, the "Hydra-Werke", an AEG company, started the production of e-caps in large quantities.
Miniaturisation of aluminum electrolytic capacitors driven by progress in the anode foil etching process
Already in his patent from 1896 Pollak wrote that the capacitance of the capacitor increase by roughening the surface of the anode foil. Today (2014), electrochemically etched low voltage foils can achieve an up to 200-fold increase in surface area compared to a smooth surface.[ Advances in the etching process are the reason for the dimension reductions in aluminum electrolytic capacitors over recent decades.
For aluminum electrolytic capacitors the decades from 1970 to 1990 were marked by the development of various new professional series specifically suited to certain industrial applications, for example with very low leakage currents or with long life characteristics, or for higher temperatures up to 125 °C."
forgot about ECS, (exploding cap syndrome)>
Water based electrolytes
With the goal of reducing ESR for inexpensive non-solid e-caps from the mid-1980s in Japan, new water-based electrolytes for aluminum electrolytic capacitors were developed. Water is inexpensive, an effective solvent for electrolytes, and significantly improves the conductivity of the electrolyte. The Japanese manufacturer Rubycon was a leader in the development of new water-based electrolyte systems with enhanced conductivity in the late 1990s The new series of non-solid e-caps with water-based electrolyte was described in the data sheets as having "Low-ESR", "Low-Impedance", "Ultra-Low-Impedance" or "High-Ripple Current".
A stolen recipe for such a water-based electrolyte, in which important stabilizing substances were absent, led in the years 2000 to 2005 to the problem of mass-bursting capacitors in computers and power supplies, which became known under the term "capacitor plague". In these e-caps the water reacts quite aggressively and even violently with aluminum, accompanied by strong heat and gas development in the capacitor, and often led to the explosion of the capacitor.
Electrical characteristics"
even ceramics lose value with age, except NPO's looks like heat can fix those>